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Vertebrate myelination is an evolutionary advancement essential for motor, sensory, and higher-order cogni-
tive function. CNS myelin, a multilamellar differentiation of the oligodendrocyte plasma membrane, en-
sheaths axons to facilitate electrical conduction. Myelination is one of the most pivotal cell-cell interactions
for normal brain development, involving extensive information exchange between differentiating oligoden-
drocytes and axons. The molecular mechanisms of myelination are discussed, along with new perspectives
on oligodendrocyte plasticity and myelin remodeling of the developing and adult CNS.
Neurologic and neurodegenerative diseases of the CNS are

often presented from a ‘‘neuron-centric’’ perspective. Patholog-

ical presentation of these diseases is primarily focused on the

neuronal deficits and dysfunction that lead to glial cell reactivity

and responses. The term glia refers to the historical concept that

these cells are the CNS ‘‘glue’’, but in the past few decades,

emerging evidence has proven that glial cells are much more

than the ‘‘support cells’’ of the CNS. Glial cells may well consti-

tute 50%–90% of the cells in the human and rodent CNS (Allen

and Barres, 2009; Doetsch, 2003; Nishiyama et al., 2005; Noctor

et al., 2007; Ullian et al., 2001), and understanding their involve-

ment during development and in the adult brain is essential. A

recent review by Freeman and Rowitch (2013) highlights the

renewed interest in gliogenesis as an integral part of CNS devel-

opment and function. Glial cells provide valuable support in

axonal function, synaptic plasticity, and as integral mediators

of neuronal connectivity. In addition to development and aging,

glial cells play crucial roles in repair and remyelination in CNS

disease and disorders (Barres, 2008; Burda and Sofroniew,

2014; Gallo and Deneen, 2014; John Lin and Deneen, 2013;

Nave, 2010; Schwartz et al., 2013).

This review focuses particularly on oligodendrocytes, the glial

cells that generate CNS myelin, although extensive studies on

peripheral nervous system (PNS) myelination by Schwann cells

have provided important perspectives that will be noted. White

matter deficits, both subtle and pronounced, are a common hall-

mark of human developmental disorders and neurodegenerative

diseases (for review, see Fields, 2008). It has become increas-

ingly clear that in order to identify the underlying mechanisms

of CNS diseases, both glial cell physiology and neuronal-glial

interactions must be considered.

Oligodendrocyte Development and Myelination
Developmental disorders of white matter demonstrate the im-

portance of oligodendrocytes and developmental myelination

for CNS function. In rodents, the oligodendrocyte developmental

program begins with specification of oligodendrocyte progenitor

cells (OPCs) derived from neural stem and progenitor cells dur-

ing late embryonic gestation. The highly migratory and prolifera-

tive OPC is identified by its expression of the NG2 proteoglycan

and the platelet-derived growth factor receptor alpha (PDGFRa).

OPCs differentiate through a premyelinating stage to become
the mature myelinating cell, which generates the myelin inter-

node, and thereby interacts with axons to organize the nodal,

paranodal, and juxtaparanodal regions of myelinated axons.

Progression through the oligodendrocyte lineage is tightly

regulated by a multitude of intrinsic and extrinsic cues, which

control myelination both spatially and temporally during devel-

opment and after demyelination. These signals include growth

factors, protein kinases, and extracellular matrix molecules,

all of which influence epigenetic modifications, transcriptional

and translational regulation, and the actin cytoskeleton in oligo-

dendrocytes (for review, see Bauer et al., 2009; Emery, 2010;

Kessaris et al., 2008; Miller, 2002; Mitew et al., 2013) (Figure 1).

Differences in temporal expression of these factors and signals

in the developing CNS result in early lineage progression and

myelination in the spinal cord, and later myelination of cortical

regions. Increasing evidence indicates that there are regionally

diverse OPC populations that may be generated by distinct

localized signaling mechanisms (Calver et al., 1998; Clarke

et al., 2012; Miller et al., 1994; Richardson et al., 2006; Tsai

et al., 2009; Warf et al., 1991). This is an active area of investiga-

tion, with much focus on the impact of different signaling mole-

cules in different brain and spinal cord regions. For example,

loss of mammalian target of rapamycin (mTOR) and mammalian

target of rapamycin complex 1 has differential impact on oligo-

dendrocyte development in different CNS regions (Bercury

et al., 2014;Wahl et al., 2014). Additionally, myelination in hetero-

zygous neuregulin-1 type III mutant mice is reduced in brain,

while optic nerve and spinal cord myelination are normal (Taveg-

gia et al., 2008). These differencesmay result fromdistinct devel-

opmental origins of OPC populations, unique neuronal popula-

tions to be myelinated, or other local environmental signals.

Recent ‘‘omics’’ analyses of the molecular, cellular, and bio-

chemical properties of oligodendrocytes andmyelin have uncov-

ered many unknown markers of oligodendrocytes and myelin.

The myelin proteome includes many more proteins than earlier

studies suggested (Ishii et al., 2009; Jahn et al., 2009), and

over 700 lipid moieties have now been identified in the myelin

lipidome (Gopalakrishnan et al., 2013). The transcriptome of

oligodendrocytes at different developmental stages has been

established (Cahoy et al., 2008), and there is a searchable data-

base of RNAs and splice isoforms (http://web.stanford.edu/

group/barres_lab/brain_rnaseq.html) for OPCs, newly formed
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Figure 1. Extrinsic and Intrinsic Cues Regulate the Oligodendrocyte Program
Progression through the oligodendrocyte lineage is mediated by numerous factors. As highlighted, signaling from the extracellular matrix (sub-figure adapted
from Bauer et al., 2009) is critical in modulating the dynamic cytoskeletal reorganization of the premyelinating-myelinating oligodendrocyte transition. Addi-
tionally, signal transduction through the Akt/mTOR pathway, modified by PTEN, has been shown to be a regulator of myelin biogenesis.
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oligodendrocytes, and myelinating oligodendrocytes from post-

natal day (P)17mouse cortex, alongwith comparable data for the

variety of other glial and neuronal cells of the developing mouse

brain (Zhang et al., 2014). Investigations into the regulation of

myelination currently must consider how these RNAs, proteins,

and lipids are coordinately regulated to generate CNS myelin,

and how they are altered in animal models of CNS disease. Addi-

tionally, these databases will be a valuable resource to cross

reference with deep sequencing studies of the human genome

that are identifying new genetic variants and candidate genes

that are disrupted in multiple developmental and degenerative

diseases.

White Matter Deficits in Human Disorders and Disease
In addition to the well-known demyelinating and dysmyelinating

diseases such as multiple sclerosis (MS), neuromyelitis optica,

and the leukodystrophies, myelin deficits resulting from altered

glial structure/function and or glial/neuronal interactions are

seen in human psychiatric disorders (for review, see Haroutunian

et al., 2014; Nave and Ehrenreich, 2014) and developmental

disorders including autism spectral disorder (ASD), sensory

processing delay disorder (Owen et al., 2013), attention deficit

hyperactivity disorder (ADHD) (Li et al., 2010; Wu et al., 2014),

and Rett syndrome (Mahmood et al., 2010). Adult onset neuro-
448 Developmental Cell 32, February 23, 2015 ª2015 Elsevier Inc.
degenerative diseases including Alzheimer’s, Parkinson’s, and

amyotrophic lateral sclerosis (ALS) (Cho, 2013; Defrancesco

et al., 2013, 2014; Kang et al., 2013; Kim et al., 2013; Lillo

et al., 2012; Pettit et al., 2013; Philips et al., 2013) also show

myelin pathology.

Genome-wide association studies, fMRI imaging, and molec-

ular analyses have shown dysregulation in oligodendrocyte gene

expression (Cannon et al., 2012; Haroutunian et al., 2007, 2014;

Kerns et al., 2010), reductions in white matter volume (Bakhtiari

et al., 2012; Cooper et al., 2014; Frazier et al., 2012; Hong et al.,

2011; Lewis et al., 2013; Prigge et al., 2013), and changes in

myelin proteins (Honer et al., 1999) in these various CNS disor-

ders and diseases. In most of these human conditions, there

are significant neuronal pathologies accompanying these myelin

changes that may well underlie the disease. In patients with

the neurodegenerative disease multiple system atrophy (MSA),

cytoplasmic inclusions that contain a-synuclein and other intra-

cellular proteins are predominantly found in oligodendrocyte cell

bodies rather than neurons (see Wong et al., 2014 for review).

Thus, in neurodegenerative and psychiatric diseases involving

neuron and/or oligodendrocyte pathologies, the impact of oligo-

dendrocyte and myelin dysfunction is coming under increasing

investigation. However, it has generally been unclear whether

the disease and/or therapies induce changes in white matter
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and myelin or changes in white matter/myelin drive aspects of

the disease. In order to understand the consequences of such

dysfunction, an in depth understanding of myelination per se

and of the function of myelin in the adult brain is necessary.

Current Questions and Approaches
The rapid propagation of electrical activity along an axon is

physiologically essential to facilitate efficient and integrated sen-

sory, motor, and higher order cognitive function. The historical

concept of myelin was as an axonal insulator that allowed faster

conduction of axon potentials via saltatory conduction, which

then enabled complex nervous systems to evolve within reason-

able space constraints. Prevailing perspectives would suggest

that its role is more multifaceted than that of a simple electrical

insulator, and that it is the bidirectional communication between

the myelinating cell and the axon that is essential for normal ner-

vous system development and function. Bidirectional signaling

mechanisms include direct cell-cell interactions, electrical activ-

ity, and trophic and metabolic support throughout development

and adulthood.

There are two crucial questions on the regulation of myelina-

tion that have been addressed for decades without a definite

conclusion. (1) What is the actual mechanism by which the oligo-

dendrocyte extends its plasma membrane to wrap axons and

eventually generate the multilayered compact myelin sheath

around axons? (2) How does the oligodendrocyte determine

exactly how much myelin to generate for an axon of a specific

diameter? Recent technological advancements in high resolu-

tion imaging, 3D electron microscopy, and genetic approaches

have led to new insights into the dynamics of myelination during

development and provide valuable experimental evidence rele-

vant to these questions.

Advances in Understanding Myelin Function
Elucidation of the Cellular Mechanism and Process of

Active Myelination

Numerous concepts of what myelin is, whether it is needed, and

how it is generated have been proposed over several decades

(reviewed by Rosenbluth, 1999). These working hypotheses

were developed to address the fundamental question underly-

ing the process of active myelination. Dating back to the

1950s, the advent of electron microscopy (EM) in the field of

CNS and PNS myelination became a standard tool to evaluate

myelin ultrastructure (Bunge et al., 1962, 1965, 1967). These

EM analyses led to two myelination models that are particularly

relevant to current studies (reviewed in Bauer et al., 2009).

These include a proposed ‘‘jelly roll’’ structure with the Schwann

cell of the PNS migrating around axons or sending an inner

tongue repeatedly around the axon to generate the wraps (Ge-

ren and Schmitt, 1954) (Figure 2A). Additionally, membranous

structures were seen within the oligodendrocyte in the CNS,

and the EM images suggested that they eventually fused to

generate myelin (De Robertis et al., 1958). The consensus

from these early EM studies was that active myelination resulted

from the inner turn of the oligodendrocyte membranous sheath

extending in a concentric and lateral movement down the

axon. In this paradigm, the polarized membranous sheath

was spirally wrapping an axon as it concurrently compacted

(Figure 2B). These models were of interest, but until recently,
static imaging techniques were insufficient to generate conclu-

sive experimental evidence. Live imaging of CNS myelination in

EGFP-expressing mice generated the ‘‘liquid croissant’’ model,

which supports this myelination model (Sobottka et al., 2011). In

these studies, oligodendrocyte processes could be imaged

opening into a triangular shape in the myelin sheath, which

moves in coiled turns around the axon, as the membrane

spreads sideward on the axon.

Elegant studies using a combination of high resolution in vivo

imaging coupled with 3D reconstructions of optic nerve fixed

with high pressure freezing/freeze substitution provide addi-

tional evidence (Snaidero et al., 2014). High pressure freezing

facilitates microsecond fixation, prevents the nucleation of ice

crystals to preserve macromolecular structures immobilized in

their native state, and permits vitrification of thicker samples.

This enhanced methodology makes it more feasible to study

the dynamic process of myelin biogenesis, even in static im-

ages. These studies show that myelination occurs through

extension of the plasma membrane as an inner tongue, expand-

ing laterally down an axon to form the paranodal loops, which

is consistent with the original model proposed by Geren

and Schmitt (1954). Interestingly, cytoplasmic channels in the

nascent membranes are present during development, with as

much as 25% of the myelin sheath in optic nerve containing

these channels during early myelination; there is rapid reduction

of these channels from P10 to P14. In this same time frame,

some myelin sheath outfoldings are seen, which also are

resolved rapidly to generate compact myelin. The cytoplasmic

channels provide communication from the outside to the inside

of the developing sheath, and membranous vesicles are present

within them, reminiscent of the membrane vesicles seen by De

Robertis et al. (1958). These cytoplasmic channels appear to

fuse into the developing membrane, as compact myelin and

paranodal loops form. Figure 2C highlights elements of this cur-

rent model of active myelination in the CNS. The availability of

new EM approaches, such as the high pressure freezing, has

made it possible to image the details of myelin biogenesis in

far greater depth, making a more comprehensive model of

active myelination possible.

Snaidero et al. (2014) further examine the molecular mecha-

nism underlying the myelinating process. Through manipulation

of the AKR/J thymoma protein (originally, the oncogene encoded

by a transforming retrovirus:v-Akt) (Akt)/mTORpathways, known

to increase myelination in the developing CNS (Flores et al.,

2008; Goebbels et al., 2010; Narayanan et al., 2009), the sub-

structure of the myelin was altered. When Akt/mTOR signaling

was increased by genetically deleting its inhibitor phosphatase

of the tensin homolog with a mutation in chromosome ten

(PTEN), the cytoplasmic channels that would normally assemble

into paranodes in control tissue were retained as channels,

allowing increased production of myelin. Importantly, in adults,

in which normal myelin had been generated, these cytoplasmic

channels could be reinduced by deletion of PTEN, and over

time the reappearance of these cytoplasmic channels was fol-

lowed by increased thickness of the preexisting myelin sheath.

Thus, this study proposes that myelination occurs through

communication from cytoplasmic channels out to the expanding

myelin membrane, and as myelination completes, these cyto-

plasmic channels resolve (see Figure 2D). Signaling through
Developmental Cell 32, February 23, 2015 ª2015 Elsevier Inc. 449



Figure 2. Past and Present Models of Myelination
In the past, two models of myelination (blue) have been proposed to ensheath an axon.
(A) Schematic of the proposed jelly roll model of myelination in which myelin concentrically wraps around the axon repeatedly overlapping the same internode.
(B) Lateral spiral movements of an oligodendrocyte process around an axon with eventual compaction.
(C) Current model of myelination adapted from Snaidero et al. (2014). (a) The grown zone (red) of an individual oligodendrocyte process contacts the axon which it
will ensheath. (b) The inner tongue of the oligodendrocyte process pushes under the outer tongue to generate the compact myelin (dark green). Cytoplasmic
channels (white) allow communication between the inner and outer tongue. (c) More compact myelin is generated. (d) Cytoplasmic channels close once the
appropriate number of myelin wraps per axon is generated and myelination is complete.
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the Akt/mTOR pathway regulates the presence of these chan-

nels, and thereby myelination.

Visualization and Kinetics of Active Myelination
Current findings suggest that active myelination is a highly or-

dered and rapid process. Recently, rapid genetic manipulations

to over- or under-express proteins in zebrafish, along with

important live imaging capability, have significantly enhanced

our understanding of the kinetics of myelination. In the zebrafish,

there is a short 5 hr window during which individual oligodendro-

cytes produce their first and their final myelin sheaths (Czopka

et al., 2013). This temporally regulated process of developmental

myelination is constant among oligodendrocytes, irrespective of

where in the zebrafish spinal cord they are located or when they

begin myelinating. Thus, cells in different parts of the spinal cord

myelinate at different times, but they all myelinate within this

temporal limit of approximately 5 hr. If this short time frame for

oligodendrocyte differentiation is consistent in mammalian sys-

tems, local cues that change rapidly during development could
450 Developmental Cell 32, February 23, 2015 ª2015 Elsevier Inc.
impact individual oligodendrocyte development. Single cells

could be exposed to unique positive or negative cues impacting

local myelination, potentially generating some of the differential

regional myelination.

With the ability to visualize oligodendrocyte dynamics and

active myelination, a crucial question remains: how does the

oligodendrocyte determine how much myelin each axon re-

ceives? Across species, oligodendrocytes produce more wraps

of myelin around larger caliber axons, and there is a relatively

consistent g-ratio (the ratio of the axon diameter, myelinated fi-

ber diameter) for axons of different diameters (Friede and Bis-

chhausen, 1982; Hildebrand and Hahn, 1978). In the rodent

PNS, axonal signaling by neuregulin III type I activates ErbB

receptors on the surface of Schwann cells to regulate myelin

sheath thickness (Michailov et al., 2004). In the CNS, no single

factor or mechanism has been identified that regulates myelina-

tion, likely because of the complexity of myelination by oligoden-

drocytes, which have been estimated to generate as many as 40

internodes per oligodendrocyte in optic nerve (Peters and
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Vaughn, 1970). Recent studies in zebrafish demonstrate that ol-

igodendrocytes are quite adaptable in generating appropriate

amounts of myelin. The Mauthner axons in the zebrafish are

two large diameter ventral projection axons that are myelinated

by ventral oligodendrocytes. Dorsally, the spinal cord axons

have far smaller diameters. Ectopic production of Mauthner

axons in the dorsal spinal cord results in proper myelination of

these large caliber axons by local oligodendrocytes that also

appropriately myelinate the surrounding smaller caliber axons

(Almeida et al., 2011). Thus, localized cues from axons can

modify oligodendrocyte function, and individual oligodendro-

cytes respond to axons of different caliber with different amounts

of myelin. These studies emphasize the synergistic relationships

between the neuronal circuitry and oligodendrocytes that modify

myelin plasticity in the CNS. However, while local axons clearly

regulate oligodendrocyte differentiation, the actual signaling

pathways regulating this in the CNS remain elusive.

Adult Myelination
Current studies have established that in the uninjured, healthy

adult brain, new myelin is continually generated (Yeung et al.,

2014; Young et al., 2013). This occurs in multiple CNS areas,

and even the fully myelinated adult rodent optic nerve, which

contains only about 1% unmyelinated axons (Dangata et al.,

1996; Honjin et al., 1977), continues to generate new oligoden-

drocytes and new myelin in the adult. Interestingly, in the human

brain, recent evidence using carbon dating has shown mature

oligodendrocyte stability with only a 0.3% turnover rate after 5

years of age. Yet, there persists dramatic remodeling of myelin

in the adult human brain (Yeung et al., 2014). This is consistent

with studies demonstrating that white matter volume can in-

crease significantly in humans after a few weeks practicing a

new skill (Bengtsson et al., 2005; Scholz et al., 2009) or can be

altered upon cognitive processing such as learning a language

(Schlegel et al., 2012). Thus, rapid changes in myelin occur in

adults, either from genesis of new cells or new membrane pro-

duction by existing cells, undoubtedly impacting the plasticity

seen in the adult brain.

The relationship of myelin thickness, axonal diameter, and

internode length is important. Internode length would be ex-

pected to regulate axonal conduction velocity, and when

Schwann cell internodes are relatively short, changes in their

length impact conduction velocity (Court et al., 2004). However,

in a PNS model of limb lengthening, changes in internode length

occur in the adult, while the axon diameter and g-ratio remain

relatively constant. Somewhat unexpectedly, axonal conduction

velocity is unchanged, despite increased internodal length, but it

is possible that long internodes have less impact on velocity than

short internodes (Simpson et al., 2013).

While extensive data indicate that, after demyelination, remye-

linated internodes are thinner and shorter than normal (Blake-

more and Murray, 1981; Gledhill and McDonald, 1977), a recent

study suggests that at late time points of recovery, as much as

6 months recovery, newly remyelinated fibers have comparable

internode length and thickness to developmentally myelinated

axons (Powers et al., 2013). This significant difference among

studies may result from the extended period of remyelination

used by Powers et al. (2013), from the different methodologies

of analysis, or from different models of demyelination/remyelina-
tion, but understanding the underlying mechanisms of myelina-

tion and remyelination in the adult brain is extremely important

for our understanding of myelin repair in disease.

Discontinuous Myelination
As noted above, fundamental questions about the process of

myelination itself are being answered and new studies have pro-

vided experimental evidence supporting claims made decades

ago. In the past, the familiar concept that myelin internodes

were uniformly dispersed down an axon became accepted in

the field, but this hypothesis is now being challenged. Classi-

cally, it was thought that unmyelinated axon segments along

myelinated axons resulted from damage or disruption of myelin.

The general consensus was that after active myelination, the

mature oligodendrocyte is in a myelin maintenance state, with

subtle remodeling of localized areas of myelin, and, when neces-

sary, remyelination by newly differentiating OPCs in demyeli-

nated areas.

Standard transmission EM has provided high image resolu-

tion, but given the complex tissue organization of the brain,

this technique could not visualize the full length of individual

myelinated axons in CNS tissue without serial reconstructions

of detailed electron micrographs in large tissue volumes. With

high throughput automation of 3D EM and software programs

that accelerate processing of high resolution reconstruction

maps of these images, it is now possible to study the longitudinal

distribution of myelin along individual axons in the rodent cortex.

Projection neuron axonal segments have distinct myelination

profiles in different cortical layers. There is a myelin gradient,

with greater myelin in layers V and VI than in layers II and III.

The axons of the deeper cortical layers are more uniformly

myelinated, but unexpectedly, there are intermittent unmyelin-

ated axonal segments in superficial layers of the cortex inter-

spersed with myelinated internodes (Tomassy et al., 2014).

This distinction of myelination patterns is independent of axonal

caliber; i.e., neuronal soma size and axonal diameter are indistin-

guishable in the deep or superficial cortical layers. The availabil-

ity of oligodendrocyte progenitors is also not a viable explana-

tion, since the oligodendrocyte progenitor population is evenly

dispersed throughout the brain (Tomassy et al., 2014). Further-

more, genetic manipulation of the laminar position of neurons

within these cortical layers alters the distribution of mature

oligodendrocytes andmyelin. These studies suggest that unique

features of different classes of cortical neurons regulate the

differences in cortical myelination. Since myelin is critical in facil-

itating conduction velocity, do these unmyelinated segments

have an evolutionary basis in regulating communication speed

within different neuronal networks in the brain? These data

would suggest that heterogeneous neuronal populations may

have differential signaling patterns modulating localized oligo-

dendrocyte myelination, and that the interaction of these neu-

rons and oligodendrocytes may regulate some elements of

plasticity in the adult brain. As noted above, new myelin is being

generated in the healthy adult brain (Young et al., 2013), and

adding newmyelin internodes in areas of discontinuousmyelina-

tion may be a mechanism for local plasticity. Altered or inade-

quate myelination in the adult could also be a component in

some of the psychiatric or neurodegenerative disorders that

involve white matter.
Developmental Cell 32, February 23, 2015 ª2015 Elsevier Inc. 451



Figure 3. Myelin Metabolic Support
Influences Axonal Integrity
Model of oligodendrocyte-derived lactate deliv-
ered by the MCT1 transporter to the axon, where it
is metabolized and used as an energy source.
Adapted from Fünfschilling et al. (2012).
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Synergism in Oligodendrocyte-Neuronal Interactions
Regulate Axon Function and Myelination
Numerous studies have demonstrated an interdependent rela-

tionship of oligodendrocytes and the axons they myelinate (for

review, see Nave, 2010; Nave and Trapp, 2008). Exciting new

studies using cutting edge methodologies underscore the rele-

vance of investigating neuronal-oligodendrocyte interactions.

Metabolic Support
While we have focused on axonal signals modulating oligoden-

drocyte plasticity, axons are similarly dependent on oligoden-

drocytes and myelin to provide support to maintain their integ-

rity. Loss of myelin results in major axonal pathology. However,

it has been known for many years that myelin can be generated

in the absence of major myelin proteins such as PLP or CNP, but

this myelin is not normal, andmyelin perturbation over time leads

to axon degeneration (Edgar et al., 2009; Griffiths et al., 1998;

Rasband et al., 2005). More recent work indicates that a major

element of the oligodendrocyte support of axons may well be

metabolic (Fünfschilling et al., 2012; Lee et al., 2012; Morrison

et al., 2013). Surrounded bymyelin, the axon is relatively isolated

from the extracellular milieu. There is ample evidence that

oligodendrocytes provide essential trophic support to axons

(Frühbeis et al., 2013; Krämer-Albers et al., 2007; Lappe-Siefke

et al., 2003; Rasband et al., 2005; Wilkins et al., 2003), and

new studies suggest their ability also to provide metabolic

support.

Mature oligodendrocytes that are incapable of electron trans-

port use aerobic glycolysis, which generates lactate and pyru-

vate (Fünfschilling et al., 2012). The lactate produced by these

cells is rapidly utilized by the axons, except when neuronal func-

tion is reduced as under anesthesia, at which point lactate accu-

mulates in the tissue. Aerobic glycolysis in oligodendrocytes is

sufficient to maintain the myelin itself, as well as the structure

and function of the myelinated axons. These studies generated

a model for the metabolic support of myelinated axons, in which

myelin delivers lactate to axons. Lactate is then metabolized in
452 Developmental Cell 32, February 23, 2015 ª2015 Elsevier Inc.
the axons, where access to other sources

of energy is limited. This initial observa-

tion was supported by studies demon-

strating that monocarboxylate trans-

porter 1 (MCT1) is highly localized to

oligodendrocytes, and it was proposed

that MCT1 transport of lactate from

myelin to the underlying axons is a major

source of metabolic support (Lee et al.,

2012) (Figure 3).

Extensive studies have established a

major role for astrocytes in metabolic

support of neurons (see Bouzier-Sore

and Pellerin, 2013 for review), and it is

likely that the metabolic support provided by oligodendrocytes

and myelin is only part of the story (Amaral et al., 2013). Never-

theless, these studies on lactate transport from myelin to axons

could substantially impact our understanding of the role of

oligodendrocytes and myelin in CNS diseases. If axons are

dependent on oligodendrocytes for lactate/pyruvate and there

are myelin deficits, axonal degeneration such as is seen in

ALS and other neurodegenerative diseases may occur. Recent

studies suggest an active role for oligodendrocytes in ALS,

which is primarily considered a neurodegenerative motor neuron

disease (Kang et al., 2013; Yamanaka et al., 2008). Chimeric

mice were generated in which the brains had cells that ex-

pressed mutant superoxide dismutase I (SOD1 [G37R]), which

induces an ALS-like disease, as well as cells that expressed

wild-type SOD1. The predominantly motor neuron degeneration

was delayed dramatically by expression of wild-type SOD1

in oligodendrocytes, despite high expression of mutant SOD1

in motor neurons (Yamanaka et al., 2008). In other studies,

impaired oligodendrocyte function in gray matter oligodendro-

cytes in the SOD1 (G93A) mutant mouse enhances the vulnera-

bility of motor neurons to ALS-linked genetic insults, speeding

the progression of the disease (Kang et al., 2013). Enhanced glial

reactivity, proliferation of NG2-positive OPCs, and a dramatic

increase in the number of oligodendrocytes occurs in this late

stage SOD1 (G93A) rodent model (Kang et al., 2010). Other

studies on the SOD1(G93A) mouse demonstrate dysmorphic

oligodendrocytes with increased turnover of differentiating oligo-

dendrocytes and reduced myelin basic protein (MBP), relative

to wild-type mice. As noted above, Lee et al. (2012) propose

that MCT1 regulates lactate transport from oligodendrocytes

to axons, and a significant loss of MCT1 was seen in spinal

cord gray matter in these mice (Philips et al., 2013). Importantly,

changes in the metabolic support of axons provided by oligo-

dendrocytes appear likely in ALS patients as well, since Lee

et al. (2012) noted that MCT1 is downregulated by 50% in motor

cortex of a cohort of ALS patients. These studies demonstrate

themetabolic support by oligodendrocytes is essential for axons
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in animal models and suggest that the loss of oligodendrocyte

metabolic support of axons may result in neurodegeneration in

humans.

Neuronal Activity and Adaptive Myelination
Adaptive myelination is an evolving concept that has been

investigated in the field for over a decade. This concept implies

that neuronal electrical excitability modifies myelin plasticity

and that myelin plasticity in turn feeds back to modulate neural

activity and behavior. First demonstrated in in vitro cultures of

PNS Schwann cells and dorsal root ganglion neurons, different

frequencies of neural-induced firing influenced in vitro myelina-

tion through differential expression of a cell adhesion molecule

L1 (Stevens et al., 1998). Studies of oligodendrocyte lineage

cell/dorsal root ganglion neuron co-cultures suggested that

electrical activity stimulated the localized release of neuro-

transmitters (ATP and vesicular glutamate) at the axo-glial syn-

apse to influence oligodendrocyte calcium levels and modify

signaling cascades that feed into local MBP protein translation

(Wake et al., 2011). Recent studies demonstrate that some of

the glutamate response of oligodendrocytes in myelinating cul-

tures can be altered by signaling molecules, such as neuregu-

lins. In studies on oligodendrocyte/dorsal root ganglion neuron

co-cultures, myelination occurs independent of neuronal activ-

ity (Lundgaard et al., 2013). However, after exposure to neure-

gulin, myelination regulation changes, and it becomes partially

dependent on neuronal excitability. Blocking N-methyl-D-

aspartate channels, which initially has no impact on myelina-

tion, now reduces myelination by over 80% (Lundgaard et al.,

2013).

These in vitro studies set the groundwork to investigate in vivo

models in which modification of neuronal function induced

changes in oligodendrocyte lineage progression and myelina-

tion. In vivo studies establish that myelination can be reduced

or increased by neuronal function. Some studies suggest a crit-

ical period in which neuronal function impacts myelination, either

during early or late development. Neural activity, either in the

medial prefrontal cortex or the barrel cortex of the somatosen-

sory cortex, impacts myelination (Barrera et al., 2013; Makino-

dan et al., 2012). Social isolation for as little as 2 weeks in the

early post-weaning period has a dramatic effect reducing myeli-

nation in the prefrontal cortex, although motor activity is unaf-

fected. Oligodendrocyte morphology is far simpler in these

mice, and myelin thickness is reduced. Reintroduction of mice

to a social environment at the end of the two weeks does not

improve myelination. In these studies, 30 days social isolation

in the adult has little impact on myelin content (Makinodan

et al., 2012). In other studies, sensory deprivation was induced

by whisker trimming starting at P1 and myelination in the barrel

cortex was reduced, with dramatic reduction in the density of

myelinated axons. Here, however, the critical window was

much later in development, consistent with the fact that active

myelination of this cortical region occurs later, increasing signif-

icantly between P45 and P60 in normal animals. Nevertheless,

as with social isolation, sensory deprivation in adult mice had

little impact reducing myelinated axons (Barrera et al., 2013).

Interestingly, in both cases, it is myelination per se that is

reduced, since the number of oligodendrocytes themselves is

normal in these tissues.
These investigations into the impact of neuronal function on

myelination suggested the existence of a critical window of

sensitivity, but other studies using social isolation in the adult

indicate adults are also susceptible. Long term social isolation

(8 weeks) results in significantly thinner myelin in prefrontal cor-

tex, but not corpus callosum (Liu et al., 2012), as has also been

seen in other studies on rodents maintained in isolation (Mark-

ham et al., 2009). Consistent with studies in younger animals,

this again appears to be primarily an effect on myelination, since

the number of oligodendrocytes in prefrontal cortex in these so-

cially isolated mice is normal (Liu et al., 2012). As noted above,

the impact of neuronal activity is also seen in humans, where

extensive long term training, such as piano practice (Bengtsson

et al., 2005) or learning to juggle (Scholz et al., 2009) correlates

with increased white matter, in a region-specific manner de-

pending on age (Bengtsson et al., 2005). Interestingly, whitemat-

ter regions that mature in adulthood (e.g., long association fiber

systems of the forebrain) are most impacted in adults by piano

practicing.

The impact of neuronal activity on myelination in adult brain

may result from the ubiquitous presence of OPCs throughout

the adult mouse brain (Dimou et al., 2008; Kang et al., 2010;

Rivers et al., 2008; Young et al., 2013). In rodent brain, adult

NG2-positive OPCs are constantly migrating through the local

environment, retracting and extending their branched processes

(Hughes et al., 2013). Adult mouseOPCs define limited territories

within which individual cells move, avoiding other adult OPCs,

just as is seen for zebrafish OPCs during development (Czopka

et al., 2013; Czopka and Lyons, 2011; Kirby et al., 2006; Takada

and Appel, 2010), but they retain the ability to migrate to areas of

damage and to effectively generate new myelin (Hughes et al.,

2013).

The Richardson laboratory has shown that over 30%ofmature

oligodendrocytes are newly formed in the adult rodent brain

(Rivers et al., 2008), which would be a remarkable source of

myelin plasticity throughout life. This group investigated the hy-

pothesis that production of newmyelin from these newly formed

oligodendrocytes; i.e., myelin plasticity, could enhance learning

in motor circuits of the brain. Myelin regulatory factor, a tran-

scription factor essential for oligodendrocyte maturation (Emery

et al., 2009), was conditionally ablated in adult mice. This

blocked new myelin production, but did not impact the existing

oligodendrocyte population or result in demyelination (McKenzie

et al., 2014). However, the inability to generate new myelin

prevented these mice from learning new motor skills on a com-

plex running wheel (McKenzie et al., 2014) (Figure 4). This is a

key observation, since this completes a feedback/feedforward

mechanism: newmotor skills normally increasemyelin in themo-

tor cortex, but the inability to generate newmyelin prevents mice

from learning the new motor skills.

Optogenetic studies have provided a more direct in vivo

demonstration of the impact of neuronal electrical excitation in

the premotor cortex on oligodendrocyte lineage cells and myeli-

nation (Gibson et al., 2014) (Figure 4). Growing in popularity,

novel optogenetic techniques were developed that utilize light-

reactive bacterial opsins to change the membrane voltage of

cells, resulting in their excitability (Arenkiel et al., 2007; Boyden

et al., 2005). The advantage of this technique is the precise

and rapid excitation of distinct subpopulations of cells in a
Developmental Cell 32, February 23, 2015 ª2015 Elsevier Inc. 453



Figure 4. Neural Activity Influences Oligodendrocyte Plasticity
Schematic of the neural induced modification of oligodendrogenesis and the feedback loop from myelin plasticity enhancing neural-mediated behavior. In ro-
dents, optogenetic induced electrical activity results in enhanced oligodendrogenesis resulting in enhanced swing speed on a Catwalk apparatus. Additionally,
motor learning on a complex wheel requires new oligodendrogenesis. Mouse illustration provided and used with permission from Dr. Michelle Monje.
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non-invasive manner in awake animals with little disruption to

the native state of the tissue. In animals expressing the

neuron-specific Thy1 promoter driving channelrhodopsin, light

induces electrical stimulation of motor cortex layer V neurons.

This protocol activated no apparent inflammation, but increased

OPC proliferation and survival, resulting in increased oligoden-

drogenesis. The mature oligodendrocyte number increased

along with increased MBP protein expression and myelin sheath

thickness (Gibson et al., 2014). The functional consequences of

these changes in oligodendrocytes and myelin were determined

by gait analysis on a Catwalk apparatus. This optogenetic

manipulation and increased myelination resulted in increased

swing speed of the forelimb associated with the cortical hemi-

sphere that had received optical excitation. Subsequent studies

into themechanism regulating these changes demonstrated that

neural activity directly modified oligodendrocyte differentiation

and myelination.

Conclusions
The emergence and accessibility of high throughput EM and the

surge in unique genetic models and optogenetic tools to study

the dynamic process of CNS myelination modulating neural

circuitry begin a new era investigating the complex networking

in the brain. The evidence that humans undergo minimal oligo-
454 Developmental Cell 32, February 23, 2015 ª2015 Elsevier Inc.
dendrogenesis after early childhood, but rapidly undergo myelin

turnover throughout adulthood, suggests that adaptive myeli-

nation may be a major element of the fine tuning of heteroge-

neous neural cell populations in various regions in the brain

(Yeung et al., 2014). New experimental evidence about the

fundamental processes of active myelination and the oligo-

dendrocyte-neuron relationship suggest that metabolic path-

ways, extracellular signaling mediators, and electrical activity

all facilitate changes in CNS plasticity via heightened oligoden-

drogenesis to strengthen motor learning and function. Studies

demonstrating that constant changes in white matter contribute

to life-long cognitive and motor processing provide promising

insight into the potential role of oligodendrocyte dysfunction as

a primary contributor in CNS disorders and disease (Scholz

et al., 2009; Yeung et al., 2014). The recent study demonstrating

altered metabolic monocarboxylate transporter expression in

human ALS cortex (Lee et al., 2012) may be just one example

of the importance of oligodendrocyte metabolic and trophic sup-

port on axonal integrity.

In diseases such as MS, while the most obvious pathological

presentation is plaques that have little myelin, there may also

be elements of the disease that result in myelin dysfunction

undetectable by standard approaches. For example, normal

appearing white matter in MS tissue often has reduced axonal
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density, which is generally attributed to inflammation (Frischer

et al., 2009). This normal appearing white matter may well have

dysfunctional myelin that cannot provide the necessary trophic

andmetabolic support for axons. The extensive studies showing

reduced white matter in disease (Bakhtiari et al., 2012; Defran-

cesco et al., 2014; Haroutunian et al., 2014), as well as in normal

aging in humans (Haroutunian et al., 2014) suggest that altered

myelin and oligodendrocyte function in human brain are major

factors in neurodegeneration. The concept that myelin dysfunc-

tion could be just as important as myelin loss with respect to

neurodegeneration is extremely important and may have great

significance for future research directions.
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